

What should our operational airborne "fleet" comprise in 2030?

Robbie Hood, UAS Program Director Office of Oceanic and Atmospheric Research National Oceanic and Atmospheric Administration

March 2016

Unmanned Aircraft Systems (UAS) Industry

Estimated USA Economic Impact

2015 - \$13 Billion 2025 - \$82 Billion

2013 Forecast by Association of Unmanned Vehicle Systems International (AUVSI)

Sensing Hazards with Operational Unmanned Technology (SHOUT)

FEASIBILITY EVALUATION

Objective 1

- Conduct data impact studies
 - Observing System Experiments (OSE) using data from UAS field missions
 - Observing System Simulation Experiments (OSSE) using simulated UAS data

Objective 2

• Evaluate cost and operational benefit through detailed analysis of life-cycle operational costs and constraints

SHOUT – Satellite Gap Mitigation

Satellite Gap Mitigation Study using NASA Global Hawk

- NOAA Flight Level: ~55-63,000 ft
- Duration: ~26 hr
- Range: 11,000 nm
- Payload: 1,500+ lbs
- Deployment Sites:
 - NASA Wallops Flight Facility (Wallops Island, VA)
 - NASA Armstrong Flight Research Center (Edwards AFB)

SHOUT 2015 Field Demonstration Payload

Airborne Vertical Atmospheric Profiling System (AVAPS)

PI: Terry Hock, NCAR / Gary Wick, NOAA

Measurements:

- temperature, pressure, wind, humidity (vertical profiles);
- 88 dropsondes per flight;

Resolution:

• ~2.5 m (winds), ~5 m (PTH)

High Altitude Monolithic Microwave Integrated Circuit (MMIC) Sounding Radiometer (HAMSR)

PI: Dr. Bjorn Lambrigtsen, JPL

Measurements:

- Microwave AMSU-like sounder;
- 25 spectral channels in 3 bands;(50-60 GHz, 118 GHz, and 183 GHz)
- 3-D distribution of temperature, water vapor, & cloud liquid water;

Resolution:

- 2 km vertical; 2 km horizontal (nadir)
- 40 km wide swath

High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP)

PI: Dr. Gerald Heymsfield, NASA GSFC

Measurements:

- Dual-frequency (Ka- & Ku-band), dual beam, conical scanning Doppler radar
- 3-D winds, ocean vector winds, and precipitation;

Resolution:

• 60 m vertical, 1 km horizontal;

Other SHOUT Global Hawk Payload Options for Data Impact Studies

S-HIS, TS Humberto, September 16-17, 2013

Scanning High-resolution Interferometer Sounder (S-HIS)

- PI Dr. Hank Revercomb (U. of Wisconsin)
 - Infrared sounder similar to CrIS satellite sensor (3.3 18 mm)
 - Provides brightness temperature spectra, cloud top temperature, profiles of temperature and water vapor in clear sky conditions
 - Resolution: 2 km horizontal, 1-3 km vertical

NASA Hurricane Imaging Radiometer (HIRAD)

PI – Dr. Daniel Cecil (NASA MSFC)

- Four frequency synthetic array passive microwave radiometer
- Provides ocean surface wind speed and precipitation over 40 km swath
- 1.5 2.5 km horizontal spatial resolution

NASA Cloud Physics Lidar (CPL)

PI – Dr. Matt McGill (NASA GSFC)

- Cloud/aerosol boundaries, optical depth, extinction
- Resolution: ~200 m horizontal, ~30 m vertical

Comparison of joint HIRAD and SFMR ocean surface wind observations collected for Hurricane Earl during 2010

Aircraft-Launched UAS

Raytheon Coyote

Piasecki Whimbrel

SHOUT4RIVERS

Leadership – Northern Gulf Institute

Objective

- Document requirements of NOAA NWS River Forecast Centers
- Conduct technology demonstrations
- Develop effective observing strategy and information management plan

Current Demonstration

- High-resolution monitoring of Pearl River Basin with Puma and Altavian aircraft
 - Detailed land/water maps
 - Digital elevation maps
 - Flow estimates

SHOUT Low Altitude UAS Network

UAS Web Site: http://uas.noaa.gov/

Questions should be directed to:

Robbie Hood - NOAA UAS Program Director (robbie.hood@noaa.gov / 303-905-3411)

Gaps/Future Needs

- NHOP: Surface center, continuous SST.
- Despite the relative speed of today's heavy aircraft, only a small fraction of the storm circulation is currently sampled.
- Improved temporal and spatial resolution of the eyewall, primarily for forecaster use.
- Three-dimensional depiction of wind (including where there are no scatterers), temperature, and humidity fields for model initialization and forecaster interpretation.

HIRAD swaths for wider surface winds

Combined Doppler/Lidar

Thermodynamics??

Unmanned Aircraft

- Long-endurance high-altitude aircraft could perform surveillance-type missions for more remote systems, although their slow speed places stresses on a model's data assimilation system.
- Similar missions could potentially improve model genesis forecasts.

Unmanned Aircraft

- * NHC has had limited enthusiasm for unmanned aircraft.
 - They're slow (G-IV ~30% faster than Global Hawk)
 - Cannot survey a storm in a reasonable period of time.
 - Could have specialized operational function if they can continuously monitor a specific area (e.g., RMW).

NOAA UAS Program

- Goal to evaluate utility of UAS for NOAA operations and research
- Three focus areas
 - High-impact weather
 - Marine monitoring
 - Arctic research
- Wide range of platforms
 evaluated

Fixed-Wing UAS Capabilities

High Altitude Long Endurance (HALE)

- Maximum Altitude 65,000 ft
- Maximum Endurance 25 hrs
- Maximum Payload Weight 1200 lbs

Medium Altitude Long Endurance (MALE)

- Maximum Altitude 40000 ft
- Maximum Endurance 24 hrs
- Maximum Payload Weight 400 lbs int, 2000 lbs ext

Low Altitude Long Endurance (LALE)

- Maximum Altitude 19,500 ft
 Maximum Endurance 24 br
 - Maximum Endurance 24 hrs
 - Maximum Payload Weight 13.5 lbs

Low Altitude Short Endurance (LASE)

- Maximum Altitude 1000 ft (operating altitude, higher capable)
- Maximum Endurance 2 hrs
- Maximum Payload Weight approx 2 lbs

Other Unmanned Capabilities

Vertical Takeoff and Landing (VTOL)

•Maximum Altitude 3280 ft •Maximum Endurance 1.4 hr •Maximum Payload Weight 1.7 lb

Aircraft-launched UAS (ACL)

Maximum Altitude 20,000 ft
Maximum Endurance 1.5 lbs
Maximum Payload Weight 0.9 lbs

Balloon-launched UAS (BL)

Maximum Altitude 100,000 ft
Maximum Endurance N/A
Maximum Payload Weight 3 lbs

NOAA and NASA Manned and **Unmanned Flight Capabilities**

Fuel consumption (gph) for nominal mission

AND ATMOSPA

NOAA

DEPARTMENT OF CO

S'N NATIONAL

Example of SHOUT Data Assessment

Tropical Storm GABRIELLE 2013 - 7 SEP 18Z FORECAST PERFORMANCE

Track

Slide Courtsey of Dr. Altug Askoy / OAR -AOML-HRD - CIMAS

Intensity (knots)

- Environment alone ("No DA") is not sufficient for a good track forecast (may be especially critical for weaker systems)
- Standard observations ("Aircraft") help maintain a weak depression, but with UAS observations ("Aircraft + UAS") strengthening occurs with good timing